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On a vector potential formulation for 3D electromechanical
�nite element analysis
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SUMMARY

A vector potential for the electric induction is applied to static three-dimensional fully coupled elec-
tromechanical problems. A Coulomb gauge condition imposed on the electric vector potential improves
the convergence behaviour of nonlinear problems, and in combination with a discrete set of Dirich-
let boundary conditions, it can enforce unique vector potential solutions. Based on a spectral analysis
of the sti�ness matrix, the Coulomb gauge is compared with other gauge conditions. A penalized
version of the weak vector potential formulation with Coulomb gauge is proposed and tested on some
numerical examples in electrostatics, piezoelectricity and ferroelectricity. Copyright ? 2005 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The Maxwell equations to be satis�ed in electrostatics or static electromechanical problems
with a vanishing volume density of free charges are [1]:

∇ ×E= 0 (1)

and

∇ ·D=0 (2)
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Corresponding to (1)–(2), there are two formulations of the �eld problem with di�erent
choices of the primary electric variables:

(i) The electric �eld intensity E is expressed by the scalar electric potential �, and (1) is
satis�ed automatically

E=−∇� → ∇ ×E= 0 (3)

(ii) The electric �ux D is expressed by a vector potential �, and (2) is satis�ed
automatically

D=−∇ ×� → ∇ ·D=0 (4)

Equations (3) and (4) �nd their counterparts in �nite element (FE) analysis of coupled elec-
tromechanical problems with corresponding choices of the electric nodal variables using � in
the standard scalar potential formulation [2] and � in the recently o�ered vector potential for-
mulation [3]. In coupled electromechanical FE formulations the electric vector potential leads
to a positive de�nite sti�ness matrix, in contrast to formulations based on the scalar electric
potential. Therefore, solutions of boundary value problems using scalar potential formulation
lie on a saddle point, while solutions for the vector potential formulation exist at a global
minimum in the space of the nodal degrees of freedom [3]. This di�erence favours the electric
vector potential especially for the solution of nonlinear electromechanical problems. Vector
potential formulation is superior for nonlinear problems also due to ability of ferroelectrics
to accumulate ‘plastic’ polarization and not ‘plastic’ electric �eld, and hence the formula-
tion that derives polarization from nodal degrees of freedom is more readily implemented
for ferroelectrics.
The examples in Reference [3] illustrating the vector potential were two-dimensional. Three-

dimensional vector potential solutions of the equilibrium conditions are—in contrast to the
two-dimensional case—nonunique, leading to an ill-conditioned (rank-de�cient) sti�ness ma-
trix. Uniqueness can be enforced by imposing an additional gauge condition and appropriate
boundary conditions. In our FE implementation, the Coulomb gauge known from magnetostat-
ics [1] will be satis�ed employing the penalty function method [4]. A brief comparison will
be made to the electric versions of some other gauge conditions, adapted from magnetostatics
and eddy current problems [5–9]. The in�uence of the penalty value on the accuracy of the
solution will be investigated for some examples of homogeneous and heterogeneous materials,
and some practical recommendations will be given.
In the next three sections, we �rst discuss the dielectric case, followed by consideration of

coupled electromechanical problems in piezoelectric solids and by presentation of numerical
examples.

2. THE VECTOR POTENTIAL IN ELECTROSTATICS

2.1. Boundary value problem

The �eld equations (1)–(2) in the domain V have to be complemented by boundary conditions
on the outer surface of V composed of S= SD ∪ SE (SD ∩ SE = ∅):

n ·D=Dn on SD (5)
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n×E=ES on SE (6)

where n represents the normal unit vector on S; Dn is the normal electric displacement
outside of V reduced by the surface density of free charges; ES denotes a given vector in the
tangential plane of SE , which can be expressed by the scalar potential � as ES =− n× ∇�.
In the presence of an internal interface S12 between two sub-domains V1 and V2 of V with

di�erent material properties, continuity conditions have to be enforced:

n ·D1 = n ·D2
n×E1 = n×E2

on S12 (7)

where the indices 1 and 2 refer to V1 and V2, and n denotes the interface normal. In addi-
tion to the �eld equations and boundary conditions, a complete formulation of the boundary
value problem requires a constitutive relation between E and D. For linear materials without
remanent polarization, the dielectric constitutive relation is given by

E= R ·D (8)

where R represents a load-independent second rank tensor of dielectric moduli. The �eld
equations (1)–(2), boundary conditions (5)–(7) and constitutive relation (8) ensure unique-
ness of the �eld quantities D and E.
The boundary value problem (1)–(2), (5)–(8) can be reformulated in terms of the electric

vector potential � de�ned by (4)1:

∇ × [R · (∇ × �)] = 0 in V

n · (∇ ×�) =−Dn on SD

n × R · (∇ ×�) =−ES on SE (9)

n · (∇ ×�1) = n · (∇ ×�2) on S12

n× R1 · (∇ ×�1) = n× R2 · (∇ ×�2) on S12

2.2. Uniqueness of the electric vector potential

The solution � of the boundary value problem (9) involving the ‘curl–curl’ operator is
nonunique since the equations are invariant under the transformation �→�′=�+∇�, where
�(r) is an arbitrary continuous and di�erentiable function. The electric vector potential � is
arbitrary in the sense that a gradient can be added without changing D and E, as the curl
of any gradient is zero. Contrary to the boundary value problem (1)–(2), (5)–(8) for the
physical �elds D and E, one can obtain an in�nite number of solutions to the boundary value
problem (9). This fact leads in the context of the FE method to ill-conditioned (rank-de�cient)
sti�ness matrices. An unique vector potential solution can be enforced by imposing additional
gauge conditions.
Similar observations are made for the magnetic vector potential in magnetostatics and eddy

current problems. A number of di�erent gauging strategies have been proposed and applied in
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computations: the Coulomb gauge imposed in the domain of analysis V [5–8] or on the outer
boundary S [10], the two-component gauge [11], the incomplete gauge [9], the three-�eld
formulation [12] and the tree-gauge method [13]. An alternative approach based on the direct
elimination of the degrees of freedom corresponding to vanishing eigenvalues of the sti�ness
matrix was suggested by McMeeking and Baumgarten [14] in application to ferroelectric
problems. An ungauged formulation used in Reference [15] ensures uniqueness of the �eld
quantities D and E, but not of the vector potential �.
The Coulomb gauge condition is used in the present study to ensure the uniqueness of

the electric vector potential. According to Helmholtz’ theorem [16], a vector �eld is uniquely
determined by specifying both its curl and divergence supplemented by appropriate boundary
conditions. With (4)1, the electric induction D(r)—taking the view it is given as solution of
the boundary value problem—determines only the curl of �. Therefore, an additional constraint
on the divergence of � may be imposed without changing the physically relevant �elds D(r)
and E(r). It is reasonable to simplify Equation (9)1 by the choice of ∇ ·�. Equation (9)1 can
be rewritten in the case of isotropic homogeneous materials as

∇ × (∇ ×�)=∇(∇ ·�)−��= 0 (10)

The Coulomb gauge condition

∇ ·�=0 (11)

reduces (10) to the Laplace’s equation

��= 0 (12)

This simpli�cation holds only for isotropic homogeneous materials. More complex equations
are obtained in the general case of arbitrary materials, but the Coulomb gauge condition (11)
ensures the uniqueness of � in all cases.
The solution of the vector potential problem in a bounded domain requires additional ap-

propriate boundary conditions to ensure uniqueness. A possible set of conditions is given in
Reference [5] by

n×�=P on SD

n ·�=0 on SE

�1 =�2 on S12

(13)

where P is an arbitrary vector function satisfying the condition n ·P=0.
A gauge condition is required only in three dimensions. In two dimensions with one

nonvanishing component of the vector potential,  z(x; y), the Coulomb gauge condition (11)
is satis�ed automatically. We emphasize further that gauging is not required to get a solution
for the �eld problem (1)–(2), (5)–(8). However, it e�ects the solution process of the �eld
problem (9) for � and, in particular, its convergence and accuracy of the results.

2.3. Boundary value problem with Coulomb gauge

The formulation of the boundary value problem in terms of the vector potential, which
yields an unique solution, combines Equations (9) and the gauge conditions (11), (13)
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as follows:

∇ × [R · (∇ ×�)] = 0 in V

∇ ·�=0 in V

n×�=P on SD

n× R · (∇ ×�) =−ES on SE

n ·�=0 on SE

n× R1 · (∇ ×�1) = n× R2 · (∇ ×�2) on S12

�1 =�2 on S12

(14)

The boundary condition (9)2 has been replaced in (14) by a Dirichlet type condition
n×�|SD =P [5]. P is an otherwise arbitrary vector �eld de�ned on the surface SD, which is
required to satisfy the auxiliary condition ∇̃ ·P=Dn on SD, where ∇̃ denotes the surface part
of the nabla-operator ∇= ∇̃+ n@n. The proof that ∇̃ ·P=Dn guarantees indeed recovery of
the original boundary condition (9)2 employs Weingarten’s equation ∇̃ × n= 0 [17]: Then it
can be shown on SD that

n · (∇ ×�)= n · (∇̃ ×�)= n · (∇̃ ×�)− � · (∇̃ × n)=−∇̃ · (n×�)=−∇̃ ·P=−Dn (15)

In the case of isotropic homogeneous materials, the Equation (14)1;2 convert to Laplace’s
equation (12). In the general case, special procedures are required. There are di�erent methods
to ensure an exact or approximate satisfaction of constraint equations, as for example the
method of Lagrange multipliers or the penalty function method. In contrast to the method of
Lagrange multipliers, the penalty function method does not introduce additional unknowns.
However, the selection of suitable penalty values is not a trivial task. Application of the
penalty method to enforce the Coulomb gauge condition leads to a modi�ed version of the
�eld equations (14)1;2:

∇ × [R · (∇ ×�)]− ∇(�∇ ·�)= 0 in V (16)

where � is an empirically chosen penalty factor. The divergence of (16) yields Laplace’s
equation for �∇ ·�:

�(�∇ ·�)=0 in V (17)

Vanishing solutions of Equation (17), �∇ ·�≡ 0, recover the original gauge condition (14)2
and the original �eld equation (14)1. This is possible, for example, if homogeneous Dirichlet
or Neumann boundary conditions could be enforced on �∇ ·� along S. On SE , Equation (14)4
replaces Neumann boundary condition for �∇ ·� [5]. Thus, a Dirichlet boundary condition
�∇ ·�=0 must be given only along SD in order to satisfy the Coulomb gauge condition. The
continuity condition on the interface S12 for Equation (17) is given by �1∇ ·�1 = �2∇ ·�2.
In summary, the following boundary value problem with penalized Coulomb gauge has to
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be solved:

∇ × [R · (∇ ×�)]− ∇(�∇ ·�)= 0 in V

n×�=P on SD

�∇ ·�=0 on SD

n× R · (∇ ×�) =−ES on SE

n ·�=0 on SE

n× R1 · (∇ ×�1) = n× R2 · (∇ ×�2) on S12

�1 =�2 on S12

�1∇ ·�1 = �2∇ ·�2 on S12

(18)

Note the correspondence between the number of unknowns and the number of equations
in V and the boundary conditions on S.

2.4. Variational formulations

A weak form of the boundary value problem (18) can be derived by setting up the scalar
product of an arbitrary test-function vector �� with the �eld equation (18)1 and integrating
over V . The test-function has to satisfy the homogeneous versions of the Dirichlet boundary
and interface conditions (18)2;5;7. Partial integration yields with account of the Neumann
boundary conditions (18)3;4;6;8 and the �eld equation (18)1:∫

V
[(∇ × ��) · R · (∇ ×�) + �(∇ · ��)(∇ ·�)] dV −

∫
SE

�� ·ES dS=0 (19)

The weak form, Equation (19), can be modi�ed in order to incorporate directly a prescribed
electric surface potential, �=�s on SE: Substituting ES =−n× ∇� into the surface integral
over SE , noting that �� · (n× ∇�) vanishes identically on SD due to the Dirichlet boundary
condition (18)2 and extending the surface integration to SD, we obtain after partial integration:∫

V
[(∇ × ��) · R · (∇ ×�) + �(∇ · ��)(∇ ·�)] dV −

∫
SE

�Sn · (∇ × ��) dS=0 (20)

In the linear case, the solution of (20) can be obtained also by minimizing the functional

F(�)= 1
2

∫
V
[(∇ ×�) · R · (∇ ×�) + �(∇ ·�)2] dV −

∫
SE

�Sn · (∇ ×�) dS (21)

2.5. FE formulations

The vector potential written in vector–matrix notation as {�(r)}= { x(r);  y(r);  z(r)}T is
interpolated from nodal quantities {�n} using the shape functions [N(r)] as follows:

{�}=[N]{�n} (22)

From now on, {:} denote columns of the FE quantities, {:}T their transposition, whereas [.]
are matrix operators acting on the columns.
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The electric displacement components {D(r)} can be derived from the nodal variables as

{D}=[B ]{�n} (23)

where the ‘curl’ matrix [B (r)] is de�ned as [3]

[B ]=

⎡
⎢⎢⎣
0 @z −@y

−@z 0 @x

@y −@x 0

⎤
⎥⎥⎦ [N] (24)

The divergence of the vector potential is approximated by the relation

∇ ·�= {A}T{�n} (25)

where the ‘divergence’ vector {A(r)} is de�ned as
{A}T = {@x @y @z}[N] (26)

Equation (20) yields the FE equations

([K  ] + [K�]){�n}= {QS} (27)

with the sti�ness matrices [K  ] and [K�] and the load vector {QS}

[K  ] =
∫
V
[B ]T[R][B ] dV

[K�] =
∫
V
�{A}{A}T dV

{QS}=−
∫
SE

�S[B ]T{n} dS

(28)

2.6. Electrical ‘rigid body’ degrees of freedoms

Consider again the �eld equations including the Coulomb gauge condition of the boundary
value problem (18). In combination with the boundary conditions, they yield a unique solution
of the vector potential �(r). In a particular FE model, the corresponding number of discrete
Dirichlet boundary conditions (18)2;5 may be reduced, however. In order to approach this
question, we determined for several structures and gauge methods the number of zero-energy
modes of the global sti�ness matrix, which is equal to the minimum number of discrete nodal
constraints or Dirichlet boundary conditions required for uniqueness. Table I shows the rank
de�ciency (number of zero eigenvalues) of the sti�ness matrix for an ungauged formulation,
Coulomb gauge and two-component gauge.
For the Coulomb gauge condition applied in V , the number of zero eigenvalues of the

sti�ness matrix remains equal to 9 for all considered structures, similar to the constant number
of 6 rigid body motions in mechanics. The analogy is incomplete, however, as the number
of ‘electrical rigid body motions’ depends on the FE type: For 20-node hexahedral elements
not shown in Table I, the rank de�ciency of the sti�ness matrix was equal to 15. For eight-
node hexahedral elements with nine electrical rigid body motions, the zero-energy modes are
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Figure 1. Electrical ‘rigid body constraints’ of the vector potential for an eight-node hexahedral element
preventing rank de�ciency of the sti�ness matrix.

three ‘translations’, four ‘shear modes’ and two modes of biaxial ‘elongation–shrinkage’ under
constant ‘volume’. Some examples of electrical constraints removing the rank de�ciency of
the sti�ness matrix are given in Figure 1 for a single eight-node element.

3. THE VECTOR POTENTIAL IN PIEZOELECTRICITY

3.1. Coupled electromechanical boundary value problem

The �eld equations of electromechanical equilibrium and compatibility in the absence of
volume charges are

∇ · �+ fV = 0
U= (∇u)S

∇ ·D=0
∇ ×E= 0

in V (29)

where �, U and u denote stress, strain and displacements, the strain given by the symmetric
part of the displacement gradient in the small strain limit; fv is the body force vector. Possible
associated boundary conditions are

n · �= fS on S�

u= uS on Su

n ·D=Dn on SD

n×E=ES on SE

(30)

where the surface S is composed of S= S� ∪ Su (S� ∩ Su= ∅), and fS and uS are the prescribed
surface tractions and displacements. Equations (29) and (30) have to be complemented by
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constitutive relations. In piezoelectric materials, these can be speci�ed as

�= 4CD ·· (U− Ur)− (D− Pr) · 3h
E=−3h ·· (U− Ur) + R� · (D− Pr)

(31)

or

�= 4CE ·· (U− Ur)− E · 3e
D− Pr = 3e ·· (U− Ur) + Z� ·E

(32)

where the fourth rank tensors 4CD and 4CE , the third rank tensors 3h and 3e, and the second
rank tensors R� and Z� are material tensors characterizing mechanical sti�ness, piezoelectricity
and dielectric moduli, respectively; Ur and Pr are the remanent strain and the remanent po-
larization. The material constants and the two sets of constitutive relations in Equations (31)
and (32) are equivalent and can be converted into each other by linear transformations. In
the linear load range (roughly speaking below the coercive electric �eld and the coercive
mechanical stress), the material tensors and remanent properties are load independent func-
tions of position. In the nonlinear load range, they depend in a nonlinear fashion on the load
history. Formulations of the boundary value problem in terms of the electric vector potential,
Equation (4), or in terms of the scalar potential, Equation (3), call for the constitutive relations
(31) or (32), respectively.
Extending the results of the preceding section, we can formulate the electromechanical

boundary value problem for the displacements and the electric vector potential with penalized
Coulomb gauge:

∇ · �+ fV = 0 in V

∇ ×E+∇(�∇ ·�) = 0 in V

n · �= fS on S�

u= uS on Su

n×�=P on SD

�∇ ·�=0 on SD

n×E=ES on SE

n ·�=0 on SE

n · �1 = n · �2 on S12

u1 = u2 on S12

n×E1 = n×E2 on S12

�1 =�2 on S12

�1∇ ·�1 = �2∇ ·�2 on S12

(33)
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where stress and electric �eld have to be expressed by

�= 4CD ·· [(∇u)S − Ur] + [(∇ ×�) + Pr] · 3h
E=−3h ·· [(∇u)S − Ur]− R� · [(∇ ×�) + Pr]

(34)

3.2. Variational formulations

The FE equations of coupled electromechanical boundary value problems can be derived from
electromechanical variational principles generalizing the principle of virtual work in mechanics.
In the standard approach, the electric �eld is expressed by the scalar potential according to
Equation (3) [2], and the variational formulation is written as

∫
V
(� ·· �U−D · �E) dV =

∫
V
fV · �u dV +

∫
S
(n · � · �u+ n ·D��) dS (35)

In this case, the displacements u and the scalar potential � are the basic variables, �U=(∇�u)S

and �E=−∇��.
In the alternate approach, the electric induction is expressed by the vector potential accord-

ing to (4) [3]. The principle of virtual work can be stated in the form
∫
V
(� ·· �U+ E · �D) dV =

∫
V
fV · �u dV +

∫
S
(n · � · �u+ n×E · ��) dS (36)

where �D=−∇ × ��, as now the components of the vector potential are the basic electric
variables.
Satisfaction of Equation (35) for arbitrary variations �u and �� implies the mechanical

and electrical equilibrium (29)1;3, as shown by application of Gauss’ theorem. Similarly, the
system is in the mechanical and electrical equilibrium (29)1;4 if Equation (36) holds for
arbitrary variations �u and ��.
The volume integral on the left-hand side in Equation (35) represents the variation of a

mixed potential—energy in the mechanical sense, but enthalpy in the electrical sense. There-
fore, solutions of boundary value problems correspond to saddle points of the potential as a
function of u and �. The volume integral on the left-hand side in Equation (36), on the other
hand, is a pure electromechanical energy variation, rendering solutions of the boundary value
problem to true minima of the potential as a function of u and �. In the context of the FE
method, a consequence of the minimum property of the energy potential are positive de�nite
sti�ness matrices, which are of advantage in the case of nonlinear problems. For linear prob-
lems both formulations are equivalent up to numerical errors, except that the number of the
nodal degrees of freedom is larger in case of the vector potential.
In order to achieve uniqueness of the vector potential in coupled electromechanical prob-

lems, we suggest to extend the penalized Coulomb gauge condition of the preceding section
to this case. The modi�ed variational principle (36) is given by

∫
V
[� ·· �U+ E · �D+ �(∇ ·�)(∇ · ��)] dV

=
∫
V
fV · �u dV +

∫
S
[n · � · �u+ n×E · ��+ �(∇ ·�)n · ��] dS (37)
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With account of the boundary conditions in (33), the variational principle takes the form

∫
V
[� ·· �U+ E · �D+ �(∇ ·�)(∇ · ��)] dV =

∫
V
fV · �u dV +

∫
S�
fS · �u dS +

∫
SE
ES · �� dS

(38)

Similar to the transition from Equations (19) to (20) the electrical work on the surface SE

can be expressed directly by a prescribed electric surface potential �s∫
V
[� ·· �U+ E · �D+ �(∇ ·�)(∇ · ��)] dV

=
∫
V
fV · �u dV +

∫
S�
fS · �u dS +

∫
SE

�Sn · (∇ × ��) dS (39)

The variational formulation (39) provides equations in V and a set of natural boundary con-
ditions corresponding to the boundary value problem (33).

3.3. FE formulation

To generate the piezoelectric matrix relations for a FE, the continuous displacement vector
{u(r)}= {ux(r); uy(r); uz(r)}T and vector potential {�(r)}= { x(r);  y(r);  z(r)}T are expressed
by the nodal values {un} and {�n} via shape functions [Nu(r)] and [N (r)], respectively

{u}= [Nu]{un} (40)

{�}= [N ]{�n} (41)

In a similar manner, the prescribed body and surface forces and charges are interpolated from
nodal quantities using the shape functions.
Di�erentiation of Equation (40) yields the following expression for the strains {U(r)}={�x(r);

�y(r); �z(r); �xy(r); �yz(r); �zx(r)}T
{U}=[Bu]{un} (42)

where [Bu(r)] is the ‘gradient’ matrix [4]. The corresponding equation for the electric dis-
placement {D} is given by (23).
The FE equations follow by substitution of the constitutive relations (34) and of Equations

(40)–(42), (23), (25) into the variational principle (39)

[Kuu]{un}+ [Ku ]{�n}= {Fr}+ {FV}+ {FS}
[K u]{un}+ ([K  ] + [K�]){�n}= {Qr}+ {QS}

(43)

where the sti�ness matrices are given by

[Kuu] =
∫
V
[Bu]T[CD][Bu] dV; [Ku ]=−

∫
V
[Bu]T[h]T[B ] dV

[K u] =−
∫
V
[B ]T[h][Bu] dV; [K  ]=

∫
V
[B ]T[R�][B ] dV; [K�]=

∫
V
�{A}{A}T dV

(44)
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and the load vectors are

{Fr}=
∫
V
[Bu]T{�r} dV; {FV}=

∫
V
[Nu]T{fV} dV; {FS}=

∫
S�
[Nu]T{fS} dS

{Qr}=
∫
V
[B ]T{Er} dV; {QS}=−

∫
SE
[B ]T�S{n} dS

(45)

where

{�r}= [CD]{Ur} − [h]T{Pr}
{Er}=−[h]{Ur}+ [R�]{Pr}

(46)

In order to avoid confusion, note our de�nition of the matrix of piezoelectricity [hk�] with
k=1 : : : 3 and �=1 : : : 6, which retains the sequence of indices of the piezoelectric tensor
hkij—�rst the ‘electric’ index k followed by the ‘mechanical’ indices i and j or �. Allik
and Hughes [2] and Landis [3] used the opposite convention, adopting the transition rule
hkij → [h�k].
Equations (43)–(46) represent an extension of Landis’ formulation [3] modi�ed by addition

of the penalty term in order to obtain an unique solution of the vector potential in three-
dimensional problems. The case �=0 corresponds to the ungauged formulation with a singular
sti�ness matrix, which requires reduced integration [4] with low-order numerical integration
rules. This leads, however, to slow convergence (high number of conjugate gradient iterations)
for iterative methods of the FE system solution or to a possibly decreasing accuracy of the
solution obtained by direct methods.

4. NUMERICAL EXAMPLES

The electric scalar and vector potential formulations described above have been implemented
into the FE program PANTOCRATOR [18] using 8-node and 20-node hexahedral FE. The
three-dimensional problems reported below compare gauged and ungauged vector potential
formulations for linear-dielectric materials and a nonlinear ferroelectric material. The �rst
two examples involving linear-dielectric materials investigate the computational di�culties in
structures with abrupt changes of the material properties and with a reentrant corner, which
have been noted by Demerdash and Wang [19] and Kaltenbacher and Reitzinger [20] in the
context of the magnetic vector potential. The third example concerns the nonlinear analysis
of a ferroelectric polycrystalline ceramics.

4.1. Dielectric inhomogeneity subject to a homogeneous far �eld

Consider a small cube with edge length 2a and an isotropic dielectric constant �1 embedded
in a medium with a dielectric constant �2 subject to an electric far �eld induction D0 in
z direction. In the FE model, the in�nite medium is represented by a cube of dimensions
2b� 2a (Figure 2). A similar geometry has been used in References [5, 9] for eddy current
and magnetostatic analysis. Due to symmetry, only one-eighth of the problem is presented.
The planes x=0, y=0; z=0 are symmetry planes, whereas the planes x= b; y= b; z= b
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Figure 2. Dielectric inhomogeneity subjected to a homogeneous electric far �eld induction D0.

Table II. Boundary conditions on the electric vector
potential used in example 1.

x=0  y =0,  z =0
x= b  y =−D0b=2,  z =0
y=0  x =0,  z =0
y= b  x =D0b=2,  z =0
z=0  z =0
z= b  z =0

represent far boundaries. The far �eld D0 has been simulated by the Dirichlet boundary
conditions for the vector potential summarized in Table II.
The computations have been carried out using eight-node isoparametric brick elements. The

problem region has been subdivided into 8000 FE containing 9261 nodes (Figure 5). The
dielectric permittivity of the inhomogeneity is much larger than that of the surrounding
medium, �1 = 1000�2. A uniform penalty value �=1=�1 is used for both materials. The com-
parison of the solutions based on the scalar potential, gauged and ungauged vector potential
demonstrates a decrease of the accuracy with growing penalty value, see Figure 3 for the
distribution of the three components of D along the line y= z= a=2 (line AB in Figure 2).
The most signi�cant di�erences are observed for the Dy component.
Various choices of the penalty value are possible for problems with material inhomo-

geneities. In the magnetostatic analysis of Reference [7], di�erent penalty values were used
for each material corresponding to �i=1=�i. However, our results with various penalty strate-
gies for a wide range of dielectric permittivity ratios indicate that a constant single penalty
value for all materials �=1=�max is to be preferred (Figure 4) which can be rationalized as
follows: In the case of �i=1=�i, the discontinuity in � implies according to (18)8 a discon-
tinuity of ∇ ·� which is never strictly zero due to the limited numerical precision of the FE
solution. In other words, a small value of ∇ ·� in medium 2 with a low � leads to a large
value of ∇ ·� in medium 1 with a high �, and thus, taking into account (18)1, it is impossible
to achieve a su�cient accuracy for D.
Inaccurate results induced by gauging have been observed mainly in problems with consider-

able jumps of the dielectric permittivity, whereas the accuracy of the solution in homogeneous
materials was not in�uenced. The error due to gauging can be reduced by mesh re�nement
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Figure 3. Electric displacement components along the line y= z= a=2 intersecting the interface.

Figure 4. Comparison of various strategies for the choice of penalty value.

due to ∇ ·� decreasing for smaller element sizes (compare top and bottom rows of pictures in
Figure 5). A nonvanishing �eld of ∇ ·� localizes along the interface between the two media
(Figure 5), and with a �ner mesh it decays faster into the volume. The maximum value of
∇ ·� also decreases with a growing penalty factor �.
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Figure 5. Distribution of ∇ ·� for di�erent penalty values � and meshes.

4.2. Cube partially embedded in a second material subject to an average �eld D0

In the second example, a cube of material 1 is surrounded from four sides by material 2
(‘reentrant corner’, Figure 6). The whole block is subjected to an average �eld D0 in z
direction imposed by Dirichlet boundary conditions for the vector potential similar to the
previous example (Table II). The planes x=0, y=0, z=0 are symmetry planes, and only one-
eighth of the problem is presented. A similar geometry has been considered in Reference [20]
in a magnetostatic analysis. The permittivity ratio is again �1=�2 = 1000, and a homogeneous
penalty value �=1=�1 was used in both materials.
The analysis results for the gauged vector potential demonstrate a sensitivity to the type of

the FE with remarkable di�erences between the �eld distributions around the reentrant corner
obtained by linear 8-node or quadratic 20-node elements. The distribution of Dz along the
line y= z= a (ABC in Figure 6) is shown in Figure 7. Computations with 20-node elements
without gauge provide homogeneous �elds in material 1 and 2. The gauged formulation with
20-node elements leads to false oscillations near to the interface. The eight-node element
formulation is free of oscillations, but demonstrates a regular drift from the exact solution
both with and without gauging.

4.3. Ferroelectric polycrystalline ceramics

At large electric �elds and=or stresses, piezoelectric materials are able to switch their polariza-
tion direction and thus demonstrate a highly nonlinear ferroelectric behaviour. Our motivation
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Figure 6. Heterogeneous dielectric block subjected to an average electric induction D0.

Figure 7. Distribution of electric displacement Dz along the line ABC.

behind the analysis described below is to simulate the nonlinear constitutive behaviour of
ferroelectric polycrystals by averaging the response of a su�ciently large number of single
crystals in a representative volume element (RVE), which represents the macroscopic material
point. The RVE consists of a cube with 8000 single crystals (Plate 1). The behaviour of each
single crystal was modelled by a modi�ed scheme adapted from Reference [21], which is
based on direct modelling of domain wall motion in the single crystals.
Typical distributions of stress and electric �eld are given in Plate 1. The polycrystalline

cube was subjected to an electric far �eld induction D0 = 0:045 C=m
2 in x direction. All

outer sides were mechanically �xed. An incremental procedure employing modi�ed Newton–
Raphson iteration [4] was used in the nonlinear ferroelectric FE analysis. The advantage of
gauging becomes apparent in the convergence of the iteration procedure: Figure 8 shows the
relative error, which decreases monotonically to zero in the case of Coulomb gauging while
the ungauged formulation does not converge due to nonuniqueness of the vector potential.
The results obtained point out the capability of the proposed approach to examine the

coupled electromechanical behaviour of ferroelectric polycrystals in 3D. A quantitative analysis
requires further comparison with experimental data.
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Figure 8. Convergence of iteration processes for gauged and ungauged formulations.

5. CONCLUDING REMARKS

FE formulations based on the electric vector potential represent an e�cient tool to solve
nonlinear coupled electromechanical problems. For three-dimensional problems, the vector
potential requires some modi�cations caused by the loss of uniqueness. In the present paper,
we have investigated the Coulomb gauge condition and appropriate boundary conditions that
ensure an unique vector potential. Other variants of gauging procedures are brie�y considered.
The Coulomb gauge condition has been satis�ed by application of the penalty function

method. Weak forms of three-dimensional electrostatic and piezoelectric boundary value
problems with penalized Coulomb gauge are proposed and implemented in the FE program
PANTOCRATOR.
For electrostatic problems, the minimum number of discrete Dirichlet boundary conditions,

required to eliminate the electrical analogue of mechanical rigid body degrees of freedom,
has been determined by spectral analysis of the sti�ness matrix.
The in�uence of the penalty value on the accuracy of the FE solution has been analysed, for

example problems with heterogeneous material properties and some practical recommendations
are given.

ACKNOWLEDGEMENT

This work was supported by the German Research Foundation (DFG).

REFERENCES

1. Jackson JD. Classical Electrodynamics (3rd edn). Wiley: New York, 1998.
2. Allik H, Hughes TJR. Finite element method for piezoelectric vibration. International Journal for Numerical
Methods in Engineering 1970; 2:151–157.

3. Landis CM. A new �nite-element formulation for electromechanical boundary value problems. International
Journal for Numerical Methods in Engineering 2002; 55:613–628.

4. Zienkiewicz OC, Taylor RL. The Finite Element Method, 1: The Basis (5th edn). Butterworth-Heinemann:
Stoneham, MA, 2000.

Copyright ? 2005 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2006; 22:357–375



VECTOR POTENTIAL FORMULATION FOR 3D ELECTROMECHANICAL FE ANALYSIS 375

5. Biro O, Preis K. On the use of the magnetic vector potential in the �nite-element analysis of three-dimensional
eddy currents. IEEE Transactions on Magnetics 1989; 25:3145–3159.

6. Coulomb JL. Finite element three dimensional magnetic �eld computation. IEEE Transactions on Magnetics
1981; 17:3241–3246.

7. Jin J. The Finite Element Method in Electromagnetics. Wiley: New York, 1993.
8. Albertz D, Dappen S, Henneberger G. Calculation of 3D non-linear eddy current �eld in moving conductors
and its application to braking systems. IEEE Transactions on Magnetics 1996; 32:768–771.

9. Mesquita RC, Bastos JPA. An incomplete gauge formulation for 3D nodal �nite-element magnetostatics. IEEE
Transactions on Magnetics 1992; 28:1044–1047.

10. Kangro U, Nicolaides R. Divergence boundary conditions for vector Helmholtz equations with divergence
constraints. Mathematical Modelling and Numerical Analysis 1999; 33:479–492.

11. Carpenter CJ. Comparison of alternative formulations of 3-dimensional magnetic-�eld and eddy current problems
at power frequencies. Proceedings of IEE 1977; 124:1024–1034.

12. Nishiguchi I, Matsuzawa H, Sasaki M. A comparative study of magnetostatics using three-�eld formulation and
conventional vector potential formulations. IEEE Transactions on Magnetics 1997; 33:1243–1246.

13. Albanese R, Rubinacci G. Solution of three dimensional eddy current problems by integral and di�erential
methods. IEEE Transactions on Magnetics 1988; 24:98–101.

14. Baumgart J. Constraining the �nite element sti�ness matrix in the vector potential formulation for electrostatics.
Grosser Beleg, University of California, Santa Barbara, 2003.

15. Demerdash NA, Nehl TW, Fouad FA. Finite element formulation and analysis of three dimensional magnetic
�eld problems. IEEE Transactions on Magnetics 1980; 16:1092–1094.

16. Helmholtz H. �Uber Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen.
Crelles Journal 1858; 55:25–55.

17. Spivak A. Comprehensive Introduction to Di�erential Geometry (3rd edn), vol. 3. Clothbound, 1999.
18. Semenov AS. PANTOCRATOR—the �nite element program specialized on the nonlinear problem solution.

Proceedings of the V International Conference on ‘Scienti�c and Engineering Problems of Predicting the
Reliability and Service Life of Structures and Methods of their Solution’, 2003; 466–480 (in Russian).

19. Demerdash NA, Wang R. Theoretical and numerical di�culties in 3D vector potential methods in �nite element
magnetostatic computations. IEEE Transactions on Magnetics 1990; 26:1656–1658.

20. Kaltenbacher M, Reitzinger S. Appropriate �nite element formulations for 3D electromagnetic �eld problems.
IEEE Transactions on Magnetics 2002; 38:513–516.

21. Huber JE, Fleck NA, Landis CM, McMeeking RM. A constitutive model for ferroelectric polycrystals. Journal
of the Mechanics and Physics of Solids 1999; 47:1663–1697.

Copyright ? 2005 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2006; 22:357–375



Plate 1. Stress �x and electric intensity Ex �eld distributions in ferroelectric polycrystalline.
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